Indian Statistical Institute, Bangalore Centre

B.Math III Year, First Semester Semestral Examination Differential Equations November 30, 2012

Time: 3 Hours

Instructor: C.R.E. Raja

Answer any five, each question carries 6 marks, total marks: 30

- 1. Solve $y' + P(x)y = Q(x)y^n$ where $n \ge 2$ and P, Q are continuous and apply it to solve $xy' + y = x^4y^3$.
- 2. Find the general solution of $x^2y'' 2xy' + 2y = 0$ on a interval J not containing 0. Can one determine any solution of $x^2y'' 2xy' + 2y = 0$ on any interval I. Justify your answer.
- 3. Find a particular solution of $y'' + 2y' + 5y = e^{-x} \sec 2x$ using the method of variation of parameters.
- 4. Let f and $\frac{\partial f}{\partial y}$ be continuous functions on $[a, b] \times \mathbb{R}$. If y_1 and y_2 are solutions of y'(x) = f(x, y(x)) on [a, b], prove that $\{t \in (a, b) \mid y_1(t) = y_2(t)\}$ is (a, b) or \emptyset .
- 5. Find a solution u of $u_t = u_{xx}$ by SV-method that satisfies $\lim_{t\to\infty} u(x,t) = 0$.
- 6. Let Ω be a bounded connected open set in \mathbb{R}^2 and $u \in C^2(\Omega)$ be $u_{xx} + u_{yy} \ge 0$ on Ω . Prove that either u is a constant or $u(x) < \sup_{\Omega} u$ for all $x \in \Omega$.
- 7. Solve $(3y 2u)u_x + (u 3x)u_y = 2x y$, u(s, s) = 0.

Answer any two, each question carries 10 marks, total marks: 20

1. (a) Find a solution of $(1 - x^2)y'' - xy' + p^2y = 0$ using power series method where p is a constant.

(b) Solve x(1-x)y'' + [c - (a+b+1)x]y' - aby = 0 near x = 0 where a, b, c are constants and $c \notin \mathbb{Z}$.

- 2. (a) Let w(x,t) and v(x,t) be solutions of ut = uxx. Find a solution of ut = k(uxx + uyy) such that u(x, y, 0) = w(x, 0)v(y, 0) for k > 0.
 (b) Use SV-method to find solutions of ut = Δu on [0, a] × [0, b] and t ∈ [-1, 1] satisfying u(0, y, t) = u(a, y, t) = 0 and u(x, 0, t) = u(x, b, t) = 0.
- 3. (a) Let D be a bounded open set and u be harmonic on D and continuous on \overline{D} . Prove that $\max_{\overline{D}} u = \max_{\partial D} u$.

(b) Prove that $f \in C^2(\mathbb{R})$ is harmonic on \mathbb{R} if and only if f has mean value property (on \mathbb{R}).